Precise orientation of a single C60 molecule on the tip of a scanning probe microscope.
نویسندگان
چکیده
We show that the precise orientation of a C(60) molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C(60) cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C(60)-C(60) pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)].
منابع مشابه
Controlled contact to a C60 molecule.
The tip of a low-temperature scanning tunneling microscope is approached towards a C60 molecule adsorbed at a pentagon-hexagon bond on Cu(100) to form a tip-molecule contact. The conductance rapidly increases to approximately 0.25 conductance quanta in the transition region from tunneling to contact. Ab-initio calculations within density functional theory and nonequilibrium Green's function tec...
متن کاملSimultaneous single molecule atomic force and fluorescence lifetime imaging
The combination of atomic force microscopy (AFM) with single-molecule-sensitive confocal fluorescence microscopy enables a fascinating investigation into the structure, dynamics and interactions of single biomolecules or their assemblies. AFM reveals the structure of macromolecular complexes with nanometer resolution, while fluorescence can facilitate the identification of their constituent par...
متن کاملResonant electron heating and molecular phonon cooling in single C60 junctions.
We study heating and heat dissipation of a single C(60) molecule in the junction of a scanning tunneling microscope by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the scanning tunneling microscope tip contacts the fullerene the molecule can sustain ...
متن کاملSpectroscopy of transmission resonances through a C₆₀ junction.
Electron transport through a single C60 molecule on Cu(1 1 1) has been investigated with a scanning tunnelling microscope in tunnelling and contact ranges. Single-C60 junctions have been fabricated by establishing a contact between the molecule and the tip, which is reflected by a down-shift in the lowest unoccupied molecular orbital resonance. These junctions are stable even at elevated bias v...
متن کاملManipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip
The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 108 26 شماره
صفحات -
تاریخ انتشار 2012